Homework # 10: 6.17, 6.21. 6.24, 6.27, 7.4, 7.12

6.17) What’s the molecular weight?
Solution:
This is simple if you know the right equation:

RT's
M = D(1 —vp)
(8.314 M) (293K)(4.6 x 10713 5)
_ s2-mol - K
(61><10—7 CmQ) ( m )2<1—07330—mg-10i)
. s 100 em ’ g cm?

68.8 kg/mol
= 6.88 x 10* g/mol

6.21) a. Find the diameter of the protein.

Solution:

If we know the frictional coefficient, f, then we can find the radius using f = 67nr. Rearranging this
equation, we get

.- L
67N
kT
<T) . kT
= W since f = B

1.380 x 102 J/K - 313K
2

14.95 x 10-7 ©
S

g
cm - s
= 1.59x107*J-s%/g-cm
kg-m?s?-cm y 1000g y 100m

670.0101

= 1.59x 107"
52 g kg cm

= 1.59nm

This gives us the radius; the diameter is twice the radius, so d = 3.18 nm.

b. Find the change in volume of the protein upon denaturation.
Solution:
Since the only thing which has changed is the diffusion constant, we can find the radius exactly as in



part a.

kgT
Dnew

67N

1.380 x 1072 J/K - 313K
2

cm
12.80 x 1077 —
s

g
cm - s

6 7 0.0101
= 1.77Tnm

Since we're assuming our protein is roughly spherical, the volume is given by %71’7‘3, and the change in
volume is

AV = View — Vo

3 new — gHTgld
- gw[(1.77nm)3 — (1.59nm)?]
= 6.39 nm?

. . . . o Shigh pH
c. Find the ratio of sedimentation velocities, .

Slow pH

Solution:
Using the Eqn 6.48 in the text for sedimentation, we find that

(m(l — Uhigh P))
ShighpH fhigh

Slow pH (m(l — Ulow p))

flow
flow(1 - ’Dhigh ) p)
Thigh(1 — Tjow - p)

kT -
(Dz (1 — Uhpign - P))

( L p)>

Dhign
Dhigh(1 — Dnign - p) (1)
l)low(1 - @low ) p)

Before we can continue this, we should determine v for both the high and low pH states. v is the partial
specific volume, or the volume per gram of substance. In particular,

U = (volume per molecule)(# of molecules in a mole)(moles per gram) (2)

a7 - 6.02 x 1023 motecules
— 3 moles

molecular weight




So using the radius from part b. we can determine the partial specific volume.

4 7 3 23 1 3
m(1.59 x 107" em)® - 6.02 x 10
Dhigh = ( ) moles _ () 794 I
14000 % g
4 7 3 23 1 3
(177 x 107" em)® - 6.02 x 10
Vo = 2 ( ) moles — () 999 I
14000 & g

We now have all the values we need to plug in to Equation ( 1). This gives us

ShighpH 14.25 x 1077 %(1 _ 0_724% -1.04_%;)

= 5 = = -7.05
Slow pH 12.80 x 107 %(1 — 0999% . 104cmi3)
The negative number implies that the low pH (denatured) protein floats!
6.24) a. Find the molecular weight.
Solution:
We do this exactly as in problem 6.17:
M - RTs
~ D(1-1p)
_ (8.314 Fom” )(293 K)(1025 x 10~ '35)
(3.60 x 108 &%) (g —)2(1 — 0.605 <= - 1.0 _%5)
k
= 175 x 10°—L
mol
= 175 x 108-L
mol
b. Find the volume per head group.
Solution: | N
volume -
Recall from Eqn ( 2) above that the partial specific volume is equal to & = Wo. Rearranging
this equation gives us:
1 v MW
m =
volume No

0.605 <™ - 1.75 x 10° -%;
6.02 x 102 -L
= 1.76 x 107 em?

c. Find the frictional coeflicient.
Solution:



=~
w
N~

=7
_ (L3 x107® kgm”) (293 K) <100cm>2
3.60 x 108 m
k
- 112x100 Y
S
— 112x 1002
S

d. Find the volume using the frictional coefficient.
Solution:
We know that f = 67nr (this is the Stokes equation) so we could use f above to find the radius of the
head group if we actually knew the viscosity. Since that’s not given, we need to hunt and peck through
the book to find it: 790, = 1.0050cP (pg. 284). Using that, we can find the radius:

67N
1.12x 1076 ¢
67 - 1.0050 x 10—2 £
= 5.91x 10 %m

Great! We now have our radius. We can transform this to volume by assuming the head group is
spherical:

4 .
V= §7r7‘3 =8.66 x 107 em? = 8.66 x 1084

6.27 In this problem, we denote prothombin by (P), thrombin by (T) and the cleaved peptide by
(C). Find the molecular weights of P, T, and C.

Solution:

The molecular weight of P can be found using the methods from the previous problems:

Mo — RT's
" D -vp)
_ (8.314 K2 ) (203 K)(4.85 x 10~135)
(6.27 x 10=7 &) (g —)2(1 — 0.70 &= - 1.0 S25)
_ 631
mol
= 631 x10°—L
mol

Now we must find the molecular weights of T and C. First, note that you can write the radius in terms



of the molecular weight:

4
V = §7W3 Furthermore,

V= M9y, Combining these, we find

4 :
Mvy, = —mr® which rearranges to

_ [(3Mo,\?
T 4

Using this result, we can rewrite the diffusion coefficient as a function of molecular weight:
D— kT _ kgT
f 6mnr
kgT

(3M@2) 5
67n
4

Finally, we can look at the ratio of the diffusion constants for P and T:

kgT
3Mrv, 3
6y TUT?2

Dy \ 4r _ . .
—— = Since np = nr, much cancellation ensues, leaving:
Dp ( \

kgT

3MPUP2> 3

o (27
1

MZnr  In order to procede further, we now make the (mar-

Mé np ginally unjustified) assumption that np = 9, giving

— My ® S t
=\ 0 we ge

(MT> P Dp 624x1077
Dy 8.76 x 107 @
Mr = Mp(0.7123)

= 298x 10" -
mol

= 0.7123

Only the molecular weight of C remains to be found, and since mass is conserved, we know that

Mp = My + Mc. Therefore, Mc = 6.31 x 10* -4 —2.28 x 10* -L. = 4.03 x 10* L

We now forge bravely onwards to
7.4 For a reaction with mechanism



ArL B
B+C-24D

a. Write a differential equation describing the disappearance of [A].

Solution:

A differential equation relates a function to its derivatives. In this case, we know that A reacts to form
B; this means that A disappears whenever B is formed. How fast does A disappear? This amount is
given by ki, the rate constant governing the reaction A — B (yes, yes, there have been Many Many
uses for poor old k). The word “rate constant” means that it describes how fast the reaction occurs.
The larger k; is, the faster A will react to form B. k; quantitatively describes this interaction:

d[A]

W = —kl[A]

(That’s the answer to part a. but a little more explanation). The rate of change of [A] is if you

don’t understand that statement, you need to review your calculus of derivatives. Since the reaction
A — B decreases the amount of A in the system, the rate of change of [A] is negative. The rate of
change of [A] also depends on the amount of [A] you have. This should be unsurprising since if you
didn’t have any [A], you couldn’t have a reaction.

b. Write a differential equation describing [B].
Solution:
B is formed by the reaction A — B but it is taken away by the reaction B + C' — D. This means that

B
=2 = kilA] - kel BI[C)

c. Write a differential equation for the appearance of [D].
Solution:
D is formed only by B+ C — D.

2 kBl
e~

d. Write an equation that gives [A]| at any given time.
Solution:
In order to describe the behavior of [A], we will solve the differential equation in a.

dlA
% = k1[A] We now proceed by separation of variables:
d[A] .
W = —ky dt  Integrate these two sides
In[A] = —kt+ C Now exponentiate
[A] =eFtee



Almost there! Now we apply our initial conditions: We know that when ¢t = 0, [A] = [A],. So:

4] =4}y = R0
= 1-¢° This implies that :
e¢ = [A]o So the final equation is:
[A] = [Aloe™"

7.12qa. For the reaction A + B — P, derive an expression for the velocity, given that the proposed
mechanism is:

242 4,
A+B=¢
Ay +CFp oA

Solution:
The fact that the first two reactions proceed quickly to equilibrium means that we can approximate the
concentrations of our reactants using the equilibrium constant. Important Note: The fact that they use
K1, a capital K, denotes that they are giving you an equilibrium constant, not a rate constant, which
would be given by ki, a lower case k. From our two equilbrium reactions, we can get the following
equations:

K= ) 3)
]
Kz = m (4)

The velocity of our reaction is equal to:

__dA]__dB]_dP]

dt dt dt
The minus signs on the derivatives of [A] and [B] indicate that A and B are being consumed in the

d|P
reaction and the positive sign of M shows that P is being created by the reaction. In order to find

the velocity, we need only choose one of these derivatives and apply the analysis we did in 7.4 to that
derivative. It doesn’t matter which one we pick; as an exercise, you can show that you get the same
answer regardless of which derivative you pick. However, with an eye towards laziness (which is, believe
it or not, one of the Great Virtues), we note that P appears only in the last reaction, whereas A appears
in them all. So, eyeing our mechanism, we do the following:

d[P] P :
—— = k3[As][C]  solve for these quantities in (3) and (4) from above, and plug in:

dt
ks (K1 [A]?) (Ko [A][B))
== KlKng[A]3[B]

b. If you start with the same initial amounts of reactants, [A]y = [Blo,



(i) Find vg if the initial amounts of [A] and [B] are doubled.
Solution:

We just derived an equation for v above. With our original amounts of [A], and [B]o, we can find that
our initial vq is:

vy = K1 Kyks[AJj[Blo

We indicate the velocity which starts with double the amounts of reactants with a prime:

vy = KiKks(2[Alo)*(2[Blo)
= 2*K Kyks[A)3[Blo
= ]_61)()

So the initial rate increases by a factor of 16.

(i) What is the effect on ;5 if the initial concentrations of A and B are doubled?
Solution:

The first thing we will do is derive an expression for ¢, /5, the half-life of the reaction. First, we will find
an expression for concentration as a function of time:
d[A]
it
= —K Kyks[A]*dt  since [A]p = [B]o and A and B decrease at the same rate

— K1 K>k3[APP[B]  from our expression for the velocity

d[A] : .

W = — K Koksdt separation of variables

d[A] . .

ATt = - [ K Ksksdt integrating....
1

_3[A]3 == —K1K2k3t+0

1

e = K1 Kskst+C We don’t say —C since —C is still just a constant (5)

Now we must determine what C', our constant of integration, is. To do this, we plug in our initial
amounts at time 0 and solve for C:

1
m - K1K2k3(0)+0
o - 1
— 3AR

Now, the half life is the point where only half of the reactants remain. In other words, it is the point
where [A] = 1[A];. We can therefore find ¢1/» by plugging this value into (5), along with the value for



1 1
3(%)3 = KiKokst/o + 3[4
Sl KKkt
3[Af  3[AR} a
3[174]8 = K Ksksty)o
hyp = —
3[AR K Ksks3

Almost done! Now that we have an expression for the half-life as a function of initial concentration, we
can answer the question: what happens to the half life if we double the concentration of both A and B?

P 7 B 7 B tli
Y2 7 3(2[A]0)3K 1 Koks 8 x 3[ARK Kyks 8

Whew! So doubling the concentrations of A and B decreases the half life by 1/8!
You could alternately have used equation 7.26 from your text, but calculus is good for your soul.

(iii) Find vy if [A] remains unchanged and [B] is increased 10-fold.
Solution:
We already know vy from part (i) above. The new v for the increased amount of B is

’U(I) = KlKng[A]g(lo[B]o)
= ]_OKlKQl{Ig[A]g[B]O
= 10’00
So the initial rate increases by a factor of 10. Note that this means that even though the simple equation
for the reaction makes it look as if the amounts of A and B are equally important, this implies that

increasing A will make the reaction go much faster than the same increase in B. This means that
determining the effect of initial concentrations on rates can help you determine mechanisms!



